‘F',h Fermi National Accelerator Laboratory
FERMILAB-PUB-88/159-T
October, 1988

PHASE SPACE EFFECTS ON STICKING IN MUON CATALYSED d-t FUSION

LALI CHATTERIJEE *
Fermi National Accelerator Laboratory
P.O. Box 500
Batavia, Ilinois 60510, U.S.A.

ABSTRACT

Within the framework of the sudden approximation, inclusion
of proper phase space factors results in a 0.2% reduction of
sticking in d-t fusion. The inclusion of phase space effects
has been mad= possible by correctly interpreting the sticking
fraction Ws as a ratio of rates rather than probabilities. Ws
therefore makes better contact with the direct sticking experi-
ments which measure the branching ratio rather than ws. Using
similar simplified initial state wave functions, Ws is found to
be 0.9% as compared to 1.1% for the conventionally defined

sticking factor ws.

*Permanent Address: Research Scientist (UGC),
Physics Department, Jadavpur University, Calcutta-32, INDIA.

St
aFE

Operated by Universities Research Association Inc. under contract with the United States Department of Energy



INTRODUCTION

From a position of relative obscurity and insecurity in
the sixties, muon catalysed fusion has achieved international
prominence in the present decade? Projecting the fascinating
interplay of different forces of physics, it singles out an unique
position for the second generation negative lepton - the muon.
In addition to its importance for the fundamental interdisciplinary
physics involved, its attractive potential as an exotic energy
source, (by-passing tokomak temperatures and explosion dangers),
makes muon catalysed fusion particularly interesting. Born
out of a particle physics Bubbie Cha}mber experiment, its study
now involves a complex synthesis of particle, atomic, nuclear,

accelerator, neutron and reactor physics.

The chief bottleneck to achieving efficient cold fusion
is 'sticking' whereby the muon is coulombically bound to the
charged fusion product and is thus lost to the catalytic chain.
It is this crucial problem of sticking that this paper addresses.
Since the d-t system is blessed with a lot of fusion advantages,
current experimentas'aand theories concentrate on this combination

of fusion fuel.



Existing theoretical descriptions of the sticking have recently
aroused some disconterﬂf.g The naive use of the sudden approxi-
mation to determine the muon fate seems inadequate, and the
need for a proper microscopic theory of the complex catalysed
fusion event is increasingly felt. One way out of the im‘h;sse’
is to follow the suggestions in4 and perform detailed R-matrix
computations of all the reaction channels. This is no doubt

a formidable task.

Neglect of the phase space factors in the conventional
sudden approximation format is yet another source of dissatis-
faction} that indicates this may not be the ideal description.
The present work attempts to clarify at least this part of the
problem.  The analysis is restricted to the case of d-t fusion
specifically, although the general methods used apply to different

fusing partners.

The Physics and the Methodology

One must remember that the available energy after fusion
is liberated at the fusion vertex and shared by the three final
state particles - the alpha, neutron and spectator muon in the
case of d-t fusion. The kinematic distribution of available energy
has a role to play in the determination of the eventual muon
fate as stuck states can occur only when the muon and alpha
overlap in the final state phase space. Naturally this is a very
restricted phase space volume imposing a severe suppression
on the sticking. This has been discussed from a different view-

point by Rafelskii et al®



The existing theories using the sudden approximation assume
the sticking probability wg 1s given by the ratio of the overlap
of the stuck and initial states to the total dissappearance probabi-
lity of the entire (dt t). But the question arises does this take
into account correctly the phase space distribution and its allied
suppressions ? In the direct sticking experiments one measures
the branching ratio for stuck and total final states, and this
in conventional particle physics format defines a ratio of the
respective rates rather than probabilities. It is well known
that final state kinematics and phase space effects influence

reaction rates.

This work investigates the effects of proper phase space
considerations on the sticking effect. The value obtained for
the sticking factor is «2% less than the usual sudden approximation
prediction. We borrow from the sudden approximation the philo-
sophy that the fusion Event is so fast that the muon suddenly
changes its state from the initial to final one. The matrix
element is then taken as the overlap between the initial and
final states for the different stuck and non-stuck cases. For
the present, the fusion part of the matrix element is factored
out assuming as per custom that the fate of the spectator muon

is independent of the details of the fusion vertex.

The advantage of this formalism is that since the overlap

integrals are interpreted as the muon part of the matrix element,

one is able to introduce abinitio phase space factors and integrate



over phase space. Presumably the muon is connected to the
fusion vertex by vitual photon exchange which might effect
the transition of the muon from initial to final state. However
the two bound state wave functions include the exchange of
many Coulomb photons through the usual modification of ladder
diagrams. Thus it may not be necessary to include an additional
virtual photon to effect the transfer. This angle will be explored
in a subsequent work. In the present work it is assumed the
matrix element determining the muon fate is the quantum

mechanical overlap probability without invoking explictly a photon
to cause the change of state. This is analogous to tﬁe treatment
of recoil effects of spectator nuclei in muon decay from bound
states?. The muon which is spectator to the actual fusion event

participates in the reaction through the conservation kinematics.

The Formalism

The matrix elements for the stuck and free cases can

be written

IMSI = f‘l’j(r) ¢ (r) exp(=ik.r) d'r . .. ..(1)
and

M| = J‘f’i(r) exp (-ip.r) d’r; ceea(2)

L refers to the muon co-ordinate in either case,and p and k

refer to the muon momentum for the free and stuck final states
respectively. \I/,L(r) is the initial (dt u) wave function taken for
the present at nuclear contact ,and :%T('};)is the final stuck muon

state.



The respective rates for the two kinds of final states are
then
™S - (ew)® ) \M f’d Bp | 2mA eup, - P, " -(3)
b, s ™
r £=(1/2%) )JlMﬂ d3p dagn d3p (2'1)434(131 P-P-BY} - (4)

P, pnl are momenta of the (@A) and the neutron respectively
and p@‘_ ,P‘{‘ their corresponding four momenta for the case

with sticking.

Pg> Py P are the momenta of the alpha, neutron and muon
respectively for the free case without sticking, and F;“ PH,P
are the corresponding four-momenta.

The sticking fraction, or branching ratio for sticking Wg
can now be defined as a ratio of the rates as

ws 15 /(1. .50 . 5

where f‘ sums over rates for all possible stuck states.
3 S p

The value thus obtained for sticking will be compared
with that obtained for the conventional sticking fraction wg
which is defined as a ratio of the probability of sticking to
the total fusion probability i.e. . -

W, = [ J ¥.(De (r) exp (=ik.r) d’r 12 /3[|j v.(r) P el (6)

The matrix elements in both (1) and (2) are dependent
on the muon momentum, after integration over configuration
space. For the phase space integration in Q ,\M;\l must be
retained within the integrand since the muon momentum must

eventually be integrated over.



However for the case of /s the two particle final state
is completely determined by Conservation laws and the complete
phase space integration can be carried out with the help of

the four-momentum § function.

We discuss first the evaluation of r;
r‘ _ ~ 2— 3 3 (‘° - _ 3 - - 1
s = 1/(2W )ﬁMs‘ d "%I“'d E“O (Ei. E“)" Fr\)s (Pi %‘!“ E‘n\ we (7

The momentum § function is used to integrate Ry and working
in the rest frame of the decaying (dtu), one gets after integrating

over p_ with the energy delta function,

Ps :[,Ms,JE(EL-E)'\/Ea'—m‘ ]Aﬂ Eg:) . (8)

where m“l‘" is the mass of the (o{ls«) ion, E; is the total available
energy and E is the energy of the (&M) as fixed by the delta
function conservation.

E = E[/2 + (mfy, -mh J2ED .. (9)

where my, is the neutron mass and

Ei :Zm;: Mt ™0 Eg “Egey + Egne (10)
with m; running over masses of all initial particles.
Ef’ Edt/u. and E"(F‘ are the energy released during fusion,

the (dt a) binding energy and the (0(/(1) binding energy respectively.

The value of ll_(l in \ Ms\l is fixed by the conservation
laws implied in the delta functions used for the integration.
The evaluation of nf is naturally slightly more complicated
as it involves a 3-particle final state. This integral is evaluated

in a manner analogous to free muon decay sine muon decay



involves also a three particle final state. In the fusion case
the (o{-n) system is integrated in their centre of mass frame
using the energy-momentum delta function, as for the two neutri-
nos in muon decay. Subsequently we move to the rest frame
f the decaying initial (dt with = + being the total
of t ying (dt_u) 9=Py* Py g

—

momentum carried by the « - n system.
q is given by q = -p where p is the muon momentum

The integration over the @-n system is performed similarly

to that for thef{#-n) system in the case of [1 .

However in the l}‘ case, the total energy available to the
(- n) system is (Eg —E/u) where E/u is the energy carried by
the muon. The total available energy also differs slightly from
the case of r; as now although Ej§ is still Zr‘n,_ , the final
states being now different)in the post fusion scene

Ei= "‘fﬂd M+ 4 E}‘Ed\}w" (11)

However this difference in Ej is negligible since both ‘Ed’c}.c.\
and le‘\ are of order 2 keV as compared to the valu¢ of
1.8x10%keV for Ef - The muon energy can take values ranging
from zero (when the & and n are emitted in opposite directions),
to Ei/Z (when the muon is emitted opposite to the common

direction for thee-n system.

So integrating over the (e{-n) system, expression (&) forg

reduces to

[ . (1/(2%) )fM;[ [E,‘( EQ/EalEg-m3 ... (12)



where éﬂ_ = Ei. - Eﬁu

function constraints used in the integration.

... (3) and E¢ is again given by the delta

Ed_ Eul2 + -m{‘)/z e (1)

The integrand in (12) is a complicated but regular function
of E/,_,_ and can easily be integrated numerically. However as
we wish to obtain an analytic expression to help in the compari-
tive analysis, we now make a non-relativistic approximation
for the muon energy only. Thus we substitute

into (12) where T is now the kinetic energy. %then simplifies

to

@.* = M(l-T/M) we  (16)

whereM:m“+mn+Es-Edt)u' (17)

We now simplify the integrand in (12) neglecting terms

.

~ T 7 as the maximum value of T is (E‘*~ - Eqa /2 ice v 8.6MeV

tu
as compared to M~ 5 x 103 Mev and mPNIOO MeV.
Changing over to the energy variable and using (15), (i2)
reduces to E
v 2

I =( VZm,, /(ZT)S)J‘M;\ (mu +T) YT dT F(T) .. (18)
where  F(T) = | E, (€. -Ex ),xer,] JEZm > . (19

In evaluating F(T) we use binomial expansions for é/k and Uéf"’

retaining only terms ~ (T/M). Thus (T/M)* terms are neglected

and these are ~ 10 compared to the leading term.



Numerical Results

To compute Mg and M_{.‘ » we use a simplified wavefunction
for the initial (dt/u) system as our main motivation is to compare

Wg with Wg using similar wave functions.

So we use an analytic He - like wave function for the
initial (dt/u) system at the point of contact of its nuclei. So

Tw -V A2/ exp A .. (20)
with

A=Zmy (md+ my )/ {137 (my « my + m/u)} . (2D
where d » Mt are masses of the deuteron and triton respectively

and Z is the effective charge of the nuclei.

We have used relativistic unit T = c = I and (e?® /hc)=
d = 1/137 since we have done the phase space integrations

involving the delta functions relativistically.

We take the muon mass to be unity for the energy units.
As we consider sticking into (IS) state only at first, we
take
P (s - @ls(&) = expl-Agfd ACIY e (22)
with
Ag= Zy Mg Mu/ {137 (mg +mu)}] . (23)

where z&

is the charge of the alpha.
The configuration space integrals, are elementary and
yield

l Mg |2:64 ABAda(A+Aq)n/’[Rl+(A+Au )"J 4... (24)
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and
2 4
\Mﬂ: 64’7\'A3A2/[p7‘ a2]7 . (29
Expressign for /{ then becomes
G (22 2 4
=G VT (m +DATF(DAA 26T .. (26)
0
the two integrals over T are of typej_é_@é_x_ and +/Xdx/(@+bx)4
o+ b
and can be done analytically. ((,‘} s conglant) .
Substituting all necessary values for masses and energies

one gets finally

rf\ = 4.39 and /;: 0.039

so that .
W - . M - 0.0088
£ s
or Wo. = .9 %.

S

(In the denominator, Zs‘r;‘ where S' refers to stuck states other
than IS are ignored for the present, and would further reduce
Wg . Since sticking into IS is known to be largest, additional
terms in the denominator less than~ .0l can be neglected in

this estimate.

Since the initial wave function is normalised, the expression
(6) for W' becomes identical to |M5|l and numerically has a
value

wg = 0.011 corresponding to a sticking fraction of 1.1%
Thus the value obtained for sticking including phase space

effects is .9% as compared to 1.1% without these.
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Discussion

It is extremely encouraging that proper inclusion of phase
space effects reduces the theoretical value of the branching
ratio for sticking. This brightens of course prospects of eventual

utilisation.

It is known that use of exact variational wave-functions,
taken at contact yield a lower value for wg as defined by expre-
ssion (6) than the 1.19% obtained here. However the phase
space reduction of the effective branching ratio will still be
valid so that use of a similar exact wave function in the expre-
ssion for Wg will cause Wg to be also correspondingly lower

than .9% obtained here.

This work demonstrates that under identical initial conditions,
and factoring out the muon line in the catalysed fusion matrix
element, correct computation of the sticking fraction as a
branching ratio gives it a value (.2%) lower than the interpre-
tation of wg as a probability without inclusion of phase space

effects.
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